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Abstract—As the number of wireless service providers in-
creases, competition among them is becoming stronger in wireless
access networks. On the other hand, users actively change their
behaviors toward the networks to get more network resources
such as service time, bandwidth, capacity, etc. That is, each user
will actively choose a cell or a network that offers the largest
amount of resources with the lowest cost. In these environments,
service providers have to consider not only technical factors
but also economical factors such as revenue and user price. By
controlling the pricing policy, a service provider can recruit or
refuse users that are trying to associate with.

In this paper, we first model the resource purchasing and
pricing game scheme that takes not only revenue of a service
provider but also user satisfaction into account. Assuming selfish
behaviors, solution is derived using game theoretic approach.
The solution produces the integrated purchasing and pricing
scheme that shows cell breathing effect. We extend the model
to multicell environments where a user has freedom to choose
its service provider. As a user actively changes its weight of
the utility function and chooses a cell to associate with, overall
performance can be improved. We demonstrate the effect of
load balancing with the pricing policy, and the performance
improvement compared to a conventional method of association
via simulation.

I. INTRODUCTION

With a remarkable proliferation of wireless services and
an exponential growth in the number of wireless devices,
high data rate communication is one of the goals in future
wireless networks. Since bandwidth or capacity that each
individual user demands is gradually increasing, more APs
(Access Points) or BSs (Base Stations)1 are required to be
installed to overcome the shortage of wireless resources. For
this reason, there is a possibility of having several different
service providers that establish APs in a fixed region. Femto-
cells, which work like cellular BSs or WLAN APs except
for covering a small area, are such emerging example of
multiple provider environments. Since each service provider
will behave in a selfish manner to increase utilization of
its limited wireless resources, competition among the service
providers will be a new paradigm of future wireless networks
to come [3]–[5].

This research was supported by the Ministry of Knowledge Economy,
Korea, under the Information Technology Research Center support program
supervised by the Institute of Information Technology Advancement. (grant
number IITA-2009-C1090-0902-0006)

1In this paper, we use the terms AP, BS, and provider interchangeably.

On the other hand, since the wireless communication tech-
nology is significantly advanced compared to the past and it
evolves continually, in near future, a mobile device will be able
to associate with different types of networks simultaneously or
change the network service provider while receiving services.
It is called churning which refers to the migration of a user
from one service provider to another [4], [6]. If a user is not
satisfied with the currently associated network, he or she will
switch to another network that provides more bandwidth or
capacity. The churning explicitly incurs competition among
users in a hot spot region, and implicitly induces competition
among network service providers.

In such future environments, more complicated network
models incorporating both technical and economical factors
are needed. The technical factors can be throughput and quality
of service (QoS), and the economical factors can be revenue of
each service provider, cost that each user pays for the service,
and reputation. There needs to be an integrated framework or
model to reflect there technical and economical aspects of the
network to further analyze future network environments.

Game theory is a mathematical tool developed to understand
competitive situations where rational and selfish decision
makers act based on their own interests. It is a good tool
for researchers to adopt to model interaction among service
providers and among users in competitive environments as
presented in [7]–[10].

In this paper, we first formulate a game in a single cell
environment. Resource of a service provider is time and each
user purchases a fraction of time from the service provider
to maximize his own utility. Knowing the action of each
user, a service provider can determine its pricing policy that
maximizes its own revenue. With the game theoretic modeling
and approach, we derive a unique solution and express it in
a closed form. The solution maximizes the total utility of all
users as well as the revenue of the service provider at the same
time.

Based on the solution derived from the game, we formulate
a cell-site selection scheme that helps to maximize the sum of
the utility of each user when each user first selects a cell to
associate with. Briefly speaking, a user associates with a ser-
vice provider that would be expected to offer a largest amount
of resources with a good cost. To meet QoS requirements
of each user, we propose a way in which each user actively
behave. Each user involved changes the weighting factor of



the utility function to get more resource at an increased cost
in a given situation. It is beneficial for a user to modify the
weight because otherwise he will not be able to get the desired
QoS. For a service provider, it is also beneficial otherwise the
user will switch to another service provider due to the lack of
resources.

With simulations, we show that the pricing game has an
intrinsic nature of cell breathing and association control.
This effect leads to load balancing characteristic in multicell
environments. We also show that our proposed association
scheme that considers both technical and economic factors
works well. Compared to a scheme that uses a conventional
association method based on the pricing game, our proposed
association scheme outperforms in the game situation that we
are interested in.

The remainder of the paper is organized as follows. In
Section II, we model the interaction of a service provider
and users in a single cell using the Stackelberg game, and
then transform the game into a convex optimization problem
and derive its solution. In Section III, we extent the result of
the single cell game to a multicell environment, and model
active behaviors of users to preserve their QoS requirements.
In Section IV, we present simulation results and show that our
game theoretic cell-site selection works well compared to the
conventional non-game theoretic one. Finally, we conclude the
paper in Section V

II. RESOURCE PURCHASING AND PRICING GAME

In this section, we apply the Stackelberg game to model the
interaction between a service provider and users [1]. After that,
the game is transformed to a convex optimization problem and
its solution is derived in a closed form expression.

A. Stackelberg Game

The Stackelberg game is an example of an extensive form
game. It basically models two companies in the market that
are trying to decide the amounts of production of goods
sequentially. The game is played in two stages. At stage one,
the leader company decides the amount of production q1. Then
at stage two, watching q1, the following company decides the
amount of production q2. The range of q1 and q2 is from 0 to
∞. Fig. 1 shows an example of the Stackelberg game.

After the two companies decide their amounts of production,
company i gets payoff πi as follows.

π1 = P (q1 + q2) · q1 − C1(q1)
π2 = P (q1 + q2) · q2 − C2(q2),

(1)

where P (·) is the market price (i.e., demand) function that
depends on the total amount of goods in the market, and
Ci(·) is the producing cost function for company i which
is a function of the amount of production. We assume that
the market price function P (·) is non-increasing2 and that
producing cost function Ci(·) is non-decreasing.

2More goods in a market, lower price due to law of demand and supply.

Fig. 1. An example of the Stackelberg leader and follower game. The number
one and two denote leader and follower, respectively. The payoffs of the two
players are not shown.

In this game, the solution (i.e., subgame perfect equilibrium)
is achieved with the backward induction technique. With the
backward induction, player 1 can anticipate player 2’s action
if he decides q1. That is, to maximize his own profit, player
1 chooses q1 with the consideration of q2 which is a function
of q1.

B. User Utility Function and Service Provider Revenue

The utility function of a user in the network can be defined
in various manners. Motivated by [7], we use the following
utility function that needs to be maximized through time
purchasing.

ui(wi, ri, ti, p) = wi · log(1 + ri · ti)− p · ti, 0 ≤ ti ≤ 1,
(2)

where wi is a weight for user i, ri is a feasible transmission
rate that depends on the channel condition of user i, tiis a
fraction of the time that user i purchases from the service
provider, and p is the price per unit time that the provider
announces.

Assume all the users have the same weight. Without the
cost of purchasing time and the term ’1’ in the log function,
the utility function is identical to that used in proportional fair
(PF) scheduling [11]. In our utility function, subtracting the
cost incurred by purchasing time is intuitive while the ’1’ in
the log function is not. If the ’1’ in the log function does
not exist, the users in the network are forced to purchase a
nonzero amount of time since its utility is −∞ when ti = 0.
In this case, users do not have any negotiation power over
the provider. The provider can set the price arbitrarily large,
and the user must accept and follow the price not to get the
utility of ’−∞’. So, the ’1’ in the log function enables users
in the network to negotiate the price through the amount of
time to purchase with the provider. Thus, it helps to obtain a
meaningful solution in the Stackelberg game. The weight wi

of user i reflects user i’s willingness to purchase a fraction of
time at the cost of price. Higher the weight, more time a user
is willing to purchase with higher price.

On the other hand, a service provider wants to maximize its
own revenue. Since a service provider sells its time resource
at a fixed price per unit time, the revenue is the sold time
multiplied by the price. The provider has a total time of one



(a) AP announces price per unit
time.

(b) Each user purchases a fraction of
time from the AP.

Fig. 2. The procedures for the single cell game. After the provider announces
the price per unit time using the beacon or pilot, each user purchases a fraction
of time to maximize his own utility.

in each game and sells a fraction of the time to each user
according to the demand. We then have the revenue of the
provider as

revenue(p) = p ·
∑

i

ti. (3)

In the game model, a user purchases a fraction of the time
to maximize his own utility when given the price, and the
provider decides the price to maximize its own revenue. It
can be modeled by the Stackelberg game where the leader is
a provider deciding the price and the follower is users that
purchase time resource with a given price.

C. Pricing Game and Convex Optimization

In Fig. 2, the pricing game procedures are presented. We
assume that a feasible transmission rate of user i, ri, is
commonly known to the provider and user i. After hearing the
beacon or pilot, each user can measure the channel condition
and get a feasible transmission rate through the adaptive
modulation and coding mechanism. The provider knows the
set {ri} for all users after receiving the channel feedback from
each user. We assume that the provider and users have the
common knowledge of the set {wi}, which is made available
through the feedback.

The fraction of time each user i purchases can be obtained
by solving the following optimization problem:

(O) max ui(wi, ri, ti, p),
subject to 0 ≤ ti ≤ 1.

The constraint indicates that time fraction lies between 0 and
1. Since wi and ri are larger than 0, it is easy to show that
the objective function is strictly concave.

From the assumption that wi and ri for all i are common
knowledge, the provider can anticipate the action of each
user when the provider decides the price. Thus, from the
viewpoint of the provider, the behaviors of users are obtained
by summing up each.

(P) max
∑

i

ui(wi, ri, ti, p)

subject to ti ≥ 0,∑

i

ti ≤ 1.
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Fig. 3. The overall problem structure. The provider anticipates actions of
users for a specific value of price p and chooses a price that maximizes its
revenue.

The game is now transformed into a convex optimization prob-
lem [2]. Its solution enables the provider to decide the price
to maximize the revenue. The overall problem structure, pre-
sented in Fig. 3 shows two-tier optimization structure, which
captures backward induction technique to derive equilibrium
of the Stackelberg game. The solution of the optimization
problem is therefore the equilibrium(i.e., subgame perfect
equilibrium) of the game. Through a technique to solve the
convex optimization problem, we can obtain the solution3 p
and ti of the game as

p =
∑

i wi

1 +
∑

i
1
ri

(4)

and

ti =
{ wi

p − 1
ri

if ri ≥ p
wi

0 if ri < p
wi

(5)

When a user senses a channel supporting a high feasible
transmission rate, the amount of time to purchase gets larger
and it is more likely to satisfy the threshold condition. This
coincides with an intuition that a player with good condition
has higher probability to win in a game. Since the price is
determined by feasible rates and weights of all users, a user
gets a small amount of resources if many users are competing
in the game or they are with better channel conditions.

From the provider’s perspective, more users means higher
price due to the summation term of weights. With more
users competing, the provider has more negotiation power
over users, resulting in higher price. By changing the pricing
policy, the provider controls the amount of resources each user
purchases when the network gets crowded while gaining more
revenue.

Obviously a user gets more resource if he gets a higher
weight. Since the weight can be self modifiable, if a user
increases his own weight, then his optimum time gets longer.
But it also induces price increment by the provider. Thus,
self increment of the weight of a user means that he is

3The detailed procedures are omitted due to page limit.



willing to purchase more resource at the increased cost. For
a different user utility function that satisfies the concavity
characteristic and conditions for the game theoretic approach,
it is straightforward to modify the result of this paper.

III. MULTICELL EXTENSION WITH QOS REQUIREMENT

In this section we extend the result of the single cell game
approach to multicell environments. the user actively changes
the provider or modifies the weight for the utility function to
meet the QoS requirement. In this paper, we assume that the
QoS requirement of each user is minimum throughput.

A. Cell-Site Selection
In each cell, the game is played independently, so a user

must consider the game information of each cell when he
decides to join. Based on the result of the single cell game,
a user can calculate the expected throughput of each cell
when he joins. For that reason, let provider a in the network
broadcast price pa and Wa (=

∑
i in a wi), the sum of the

weights of the users the provider is currently dealing with.
The information is contained in the beacon signal or other
broadcast messages that the provider periodically broadcasts
to advertise its existence.

After hearing all the information, a user selects a cell
that provides the highest throughput. Then the user sends an
association request message and waits for admission. While
calculating the expected throughput, the user must consider
the price increment incurred by his joining. The price after
new user j joins provider a is

p′a =
Wa + wj

1 +
∑

(i in a)
1
ri

+ 1
rj

, (6)

where users with index i indicates user i already in the cell
and Wa is

∑
(i in a) wi. Then we have the expected throughput

for user j associating with cell a as

Throughputa,j =

{
wj ·rj

p′a
− 1 if rj ≥ p′a

wj

0 if rj <
p′a
wj

.
(7)

After calculating the expected throughput of each cell, the
user selects the best one and joins it. Choosing a cell with the
highest throughput implies that the user selects a game field
that he can expect to play most efficiently.

B. Increasing the Weighting Factor
If the highest expected throughput when a user selects a

cell to join is less than the user’s QoS requirement, the user
modifies his own weight of the utility function to achieve the
QoS requirement. That is, the user informs the provider of his
willingness to get more resource at the increased cost at the
time of association. Clearly, the first derivative of the expected
throughput (7) with respect to wj is always larger than 0.
This means that increasing the weight always brings more
throughput. The minimum weight for user j to achieve QoS
satisfaction is expressed as follows

w̄j =
(Qj + 1) ·Wa

rj ·
(
1 +

∑
i

1
ri

)
−Qj

, (8)

where Qj is the QoS requirement of user j. With w̄j , user j is
able to obtain required QoS at the minimum price increment.

While receiving the service from a provider, a user’s opti-
mum amount of time to purchase can vary. This is because
the price of the provider can change due to variation of com-
munication environments. For instance, there can be joining
and leaving of users, and changes of feasible transmission
rates of users. In these cases, violation of QoS requirement
can happen. A different thing from the weight setting for user
joining is that only the weight increment influences the price
since the weight before modification is already counted in the
calculation of the price. We obtain the throughput of user j
already in cell a as

Throughputj,a =
wj · rj

Wa
·
(

1 +
∑

i

1
ri

)
− 1. (9)

This throughput function is concave since its second derivative
with respect to wj is always negative. So, increasing the weight
of the utility function of a user increases the throughput.
The minimum weight when a user is already associated is
expressed as follows

ŵj =
(Qj + 1) ·Wa−j

rj ·
(
1 +

∑
i

1
ri

)
−Qj − 1

,

where Wa−j is the summation of weights of all user in cell a
except for the weight for user j. To get satisfaction with the
minimum price increment, user j must increase the weight up
to ŵj .

C. User Churning

Because of the advance of access technologies, user devices
become smarter. Thus in near future, a user will have freedom
to change the provider while receiving some service. In this
game scenario, a user periodically listens to broadcasting mes-
sages of all providers near by. With all the game information, if
it is found to be beneficial for a user to move from the current
provider to another, the user changes it. Again the metric is
throughput. When the expected throughput of any candidate
provider is greater than the current receiving throughput, the
user disassociates with the current provider and joins the
candidate one with a new weight of the utility function to
meet his QoS requirement.

IV. PERFORMANCE EVALUATION

In this section, we see how the proposed game works and
show the effects of cell breathing and load balancing. We also
show how association and active behaviors to achieve QoS
satisfaction, such as churning and weight modification, affect
network performance.

We use a simulator which is written in C++ programming.
We assume that the received SNR of a user depends only on
the distance from a provider and the user with the path loss
exponent is 2. The channel bandwidth of 11Mhz is used and
the maximum transmission range is set to 100m. The Shannon
capacity is used in calculation of throughput. The game is



(a) Single cell environments
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Fig. 4. Single cell scenario.

played in the time slot based. So a time slot is considered as a
single game. Each simulation is performed for 1,000 time slots
and the results are averaged over 100 repeated simulations.
Also we assumed that each node has random on/off time which
follows exponential distribution with the averages of 10 and 5
slots for on-time and off-time, respectively.

A. Cell Breathing and Load Balancing

Fig. 4 shows a single cell scenario. In Fig. 4(a), users
are positioned in the cell (i.e., provider) of 140 meter cov-
erage, following Gaussian random distribution with variance
1000m2.4 With the number of total users in the network,
the price that the provider announces increases following the
result of the pricing game. After knowing the announced
price, only a portion of the total users join the provider
according to the channel condition. The joining users are those
with relatively good channels while users with relatively bad
channels disassociate with the provider. As a result, cell radius
decreases with the price as shown in the Fig. 4(b). This shows
the cell breathing characteristic of the pricing game.

When there are two cells sharing a portion of their service
area as shown in Fig. 5(a), the effects of cell breathing and
load balancing characteristic of the game are clearly shown.
With respect to cell 1, users are placed with Gaussian random
distribution while cell 2 has 5 fixed users. With the number
of users around cell 1, the price of cell 1 increases as shown
in Fig. 5(b), because of the strong competitions among users
to purchase resources from the provider 1. As a result, only

4Since we have set the maximum transmission range to 100m, users that
are 100m away from the AP are unable to associate with.

users with relatively good channels survive, and accordingly
the radius of the cell 1 decreases. Some of the users that do not
survive in cell 1 switch to cell 2 because competition in cell 2
is weaker due to less number of users in it. As a consequence,
the radius of cell 2 increases. The pricing game has the cell
breathing characteristic through the control of the number of
users in the cell with the price that the provider announces.
This aspect of the game leads to load balancing effect.

B. Association, Churning, and Weight Modification

To see the effects of association and QoS aware behavior
such as weight modification and churning, the grid topology
where the distance between two neighboring providers is 100m
is used. Users are distributed with respect to one provider.
Each user generates a Poisson traffic, and its on/off time is
exponentially distributed. So, when a user starts to generate a
traffic, it scans the networks with the association scheme and
participates in the game already existing. When the user stops
generating the traffic, it simply disassociate with the provider.

It can be seen in Fig. 6(a), the network-wide through-
put performance mainly depend on the association scheme.
Although churning and weigh modification are allowed, the
network throughput does not improve. This is because each
user has exponentially distributed on/off time. When users
frequently associate and disassociate, the association scheme
mainly affects throughput performance. With the number of
users, the throughput gap between the association schemes gets
smaller. It is due to the fact that when the network is saturated,
there are quite a few users utilizing the good channels in close
proximity to a provider.

Price-aware association is also beneficial to the service
providers. In Fig. 6(b), the price-aware association scheme
dramatically improves the revenue of the service providers.
This is due to the load balancing effect. Compared to the
conventional association scheme, the price-aware association
distributes users evenly throughout the network. So users that
might not be able to purchase resources from a hot-spot
provider can easily associate with a relatively free provider.
This improves the total network revenue. Also when the
number of users increases, the network revenue increases
without a bound. This is because competition among users
gets strong since the provider’s capacity is limited. Combined
with the throughput results, when the network gets crowded,
users should pay more although there is no more throughput
gain.

QoS behavior dramatically improves QoS violation perfor-
mance as shown in Fig. 6(c). The price-aware association can
also improve QoS violation performance by distributing users
throughout the entire network well. However, self QoS behav-
ior improves the performance further by allowing individual
user’s movement for QoS preservation.

V. CONCLUSION

In this paper, we modeled network resource allocation with
Stackelberg game model. Time resource is considered for
allocation between a provider and users in a single cell first. In



(a) Two cell environments
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Fig. 5. Two cell scenario.
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Fig. 6. Network performance versus Number of users.

the considered scenario, each user tries to maximize his own
utility that is proposed to count the transmission rate, price,
and time resource together. Knowing all user information, each
provider sets the price per unit time to maximize his own
revenue. Then we extended the result of the single cell game
to the multicell game scenario where multiple providers are
available for each user to associate with. To preserve QoS
requirement, each user is enabled to have active movement by
weight modification and game-aware churning.

Through simulations we showed that the proposed game has
the advantage of cell breathing and load balancing with the aid
of pricing. We also showed that when network resources are
allocated to users through the game, game aware association,
which is price-aware association in this paper, and active
behavior of each user to preserve QoS requirement improve
network performance.

Although churning can give users more negotiation power
over providers that can bring price down or more resource, we
leave this aspect as a future work to formulate a game between
providers or a negotiation between a provider and users.
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