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Abstract 

In a distribution network with a high penetration rate of solar photovoltaic (PV), curtailment of solar PV’s output is inevitable 

to keep the network stable resulting in a high loss of renewable energy. Without network reinforcement, dynamic distribution 

network reconfiguration (DNR) that hourly controls the network topology by controlling sectionalizing and tie switches can 

reduce solar PV curtailment as changing the power flow in the network. This paper aims to minimize total energy loss by us-

ing DNR. Power loss is defined as the amount of curtailed output of PV and line losses from power flow. We formulate this 

problem as a Markov decision process (MDP) and use a deep Q-network (DQN) to solve it. DQN algorithm is a data-driven 

approach for MDP, so it does not require topology information in the dynamic DNR problem, i.e., a model-free characteristic. 

Furthermore, we adopt dropout to reduce overfitting the training data. A case study shows a performance improvement of the 

proposed DQN based dynamic DNR algorithm in terms of the total energy loss using a 33-bus distribution test feeder. 

 

1 Introduction 

To reduce greenhouse-gas-emission, in the power sector, 

renewable energy has been increased, mainly with solar and 

wind. Renewable energy-based distributed generators (DGs) 

are generally installed into distribution networks, i.e., near 

the customer side. It causes a bi-directional power flow, 

which is not considered before, resulting in instability of the 

network, such as voltage deviation, thermal limits, and pro-

tection issues. Therefore, distribution system operators 

(DSOs) restrict the portion of DGs in each feeder line, i.e., 

hosting capacity. For some DG installed more than the host-

ing capacity, renewable energy curtailment is inevitable un-

der the violation of operational conditions. The amount of 

curtailed energy increases with the amount of DGs in the 

distribution network. Therefore, it is important to reduce en-

ergy loss, including the curtailment of renewable energy. 

Note that we only consider solar PV as renewable energy, 

but any renewable energy can be applied. 

A fundamental solution to increase hosting capacity 

while minimizing curtailment is a reinforcement of the dis-

tribution network. However, this is a very costly solution in 

terms of time and budget. Therefore, related research works 

have proposed to use power devices such as on-load tap 

changing transformer, energy storage system, switches, in-

verter, etc [1-3]. Another important solution is dynamic dis-

tribution network reconfiguration (DNR), which changes 

the status of sectionalizing and tie switches in a day [3].  

Recent research on dynamic DNR problem used linear 

programming [4], dynamic programming [5], and a heuris-

tic algorithm [6]. Among them, model-based algorithms 

such as linear programming and dynamic programming re-

quire full information of the model and very accurate pre-

diction. In addition, the computational complexity of the 

model-based algorithm increases exponentially with the 

number of switches. Therefore, model-based algorithms are 

not practical for the dynamic DNR problem. On the other 

hand, heuristic algorithms take much less computational 

time, but the performance of these algorithms might not 

good with a number of switches. 

Another approach to solving the dynamic DNR problem 

is a data-driven algorithm, which does not require a model, 

i.e., model-free algorithm. In recent years, the capacity and 

speed of state-of-the-art computer systems enable data-

driven approaches a great success in various domains [7], 

[8]. Therefore, the data-driven algorithm is a practical solu-

tion for complex problems like the dynamic DNR problem. 

In this paper, we use reinforcement learning (RL), i.e., 

one sort of data-driven algorithms, to solve the dynamic 

DNR problem. We formulate this problem as a Markov de-

cision process (MDP) and use a deep Q-network (DQN) to 

solve it. The problem is formulated as a minimization of en-

ergy loss defined as a sum of line loss, switching loss, and 

curtailment of renewable energy. To avoid overfitting the 

training data, dropout is applied. A case study using a 33-

bus distribution test feeder verifies the proposed algorithm's 
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performance and shows that the DQN algorithm is a good 

approach for the dynamic DNR problem. 

 

2 Deep reinforcement learning 

RL is one of the machine learning algorithms to solve the 

MDP, which describes a sequential decision-making prob-

lem using state, action, and reward. Let  𝑠𝑡 ,  𝑎𝑡 , and 𝑟𝑡  de-

note state, action, and reward at time 𝑡, respectively. Con-

ventionally, MDPs are solved using dynamic programming, 

which is a model-based algorithm. On the other hand, RL is 

a model-free algorithm that solves MDPs using data. 

The objective of RL is to find the optimal policy that 

maximizes expected future returns [9]. A policy 𝜋 is a func-

tion which maps a state to action. In this paper, we use a 

DQN, which is a Q-learning based algorithm, to solve the 

dynamic DNR problem. Q-learning trains Q value, which is 

used to find the optimal policy without model information. 

The Q-learning algorithm updates the optimal action-value 

function 𝑄∗ as 

 

𝑄(𝑠𝑡 , 𝑎𝑡) ← 𝑄(𝑠𝑡 , 𝑎𝑡) + 𝛼[𝑟𝑡+1 + 𝛾 max
𝑎𝑡+1

𝑄(𝑠𝑡+1, 𝑎𝑡+1) 

−𝑄(𝑠𝑡 ,  𝑎𝑡)                 (1) 

where 𝛼 is a learning rate and 𝛾 is the discount factor that 

determines the weight of future reward. After the Q-value 

converges via eq. (1), the optimal policy can be obtained by 

taking the action which gives the largest Q-value among 

possible actions in each state. That is 

𝜋∗  ∶ 𝑠𝑡  → 𝑎𝑟𝑔𝑚𝑎𝑥
𝑎𝑡

𝑄∗(𝑠𝑡 , 𝑎𝑡).                   (2) 

DQN uses the ANN’s output as its Q value. To minimize 

the loss function of DQN, ANN’s weight 𝜃𝑄 is updated us-

ing training data, which is expressed as 

𝐿(𝜃𝑄) = 𝐸[(𝑟𝑡+1 + 𝛾 𝑚𝑎𝑥
𝑎𝑡+1 

𝑄(𝑠𝑡+1, 𝑎𝑡+1 ; 𝜃
𝑄−) 

−𝑄(𝑠𝑡 , 𝑎𝑡; 𝜃
𝑄))2]          (3) 

where 𝜃𝑄−  denotes the weight of the Q-target network. 

DQN uses experience tuples to calculate loss function. An 

experience tuple 𝑒𝑡  consists of state, action, reward, and 

next state, that is 

 𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡+1, 𝑠𝑡+1).                           (4) 

3 Problem formulation 

In this section, we formulate the objective function of the 

dynamic DNR as an energy loss minimization problem. The 

energy loss 𝑓 is defined as a sum of line loss, switching loss, 

and curtailment of renewable energy. That is 

𝑓 = ∑ (𝑙𝑡 × ∆𝑡 + ℎ𝑡 + ∑ 𝑐𝑡
𝑛 × ∆𝑡𝑛∈𝑁 )𝑇

𝑡=1 ,               (5) 

where 𝑙𝑡 , ℎ𝑡 , and 𝑐𝑡
𝑛  denote line loss, switching loss, and 

curtailment of renewable energy at bus 𝑛 at time 𝑡. Also, 𝑇, 

∆𝑡, and 𝑁 represent the operational period, time interval, 

and set of buses with DG, respectively.  

3.1 Radiality constraint for dynamic DNR 

Because most distribution networks use a radial network, 

we put an operational constraint to ensure system reliability. 

The radiality constraint is defined as  

∑ 𝑥𝑠𝑠∈𝑆 = 𝐶𝑠,                                 (6) 

where 𝑥𝑠  denotes a binary variable that models the on/off 

status of a line switch 𝑠, and 𝑆 and 𝐶𝑠 mean the switches set 

and a constant, respectively. This constraint implies the 

number of open [closed] switches should always be the 

same as the number of the initial radial configuration. How-

ever, it is insufficient to describe radiality because it does 

not consider the case where some buses were isolated from 

the network. Therefore, in this paper, we exclude the iso-

lated cases by finding divergence of voltage as a result of 

load flow [3].  

3.2 Curtailment of renewable energy 

 

In this paper, we define the output power limit of bus 𝑛 

as maximum power 𝑝𝑡,𝑚𝑎𝑥
𝑛  that can be integrated into the 

distribution network under operational constraints eqs. (8) 

and (9). These are   

𝑝𝑡,𝑚𝑎𝑥
𝑛 = max  𝑝𝑡

𝑛                                     (7) 

 𝑉𝑚𝑖𝑛 < |𝑣𝑡
𝑛| < 𝑉𝑚𝑎𝑥      ∀ 𝑛 ∈ 𝑁                 (8) 

|𝑖𝑡
𝑙| < 𝐼𝑚𝑎𝑥    ∀ 𝑙 ∈ 𝐿                 (9) 

Let 𝑁 and 𝐿 denote sets of buses and power lines, respec-

tively. Also, 𝑣𝑡
𝑛  and  𝑖𝑡

𝑙  are voltage at bus 𝑛 and current on 

line 𝑙  at time 𝑡, respectively. Constraint (8) describes the 

operational voltage range that the voltage magnitude for all 

buses and at any time should lie within the nominal voltage 

range [𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥]. Also, there is a constraint (9) for power 

lines, current should be kept less than 𝐼𝑚𝑎𝑥. Now, we can 

obtain an amount of curtailment 𝑐𝑡
𝑛 as 

𝑐𝑡
𝑛̅ = max (𝑃𝑛 × 𝜌𝑡 − 𝑝𝑚𝑎𝑥

𝑛 , 0)                   (10) 

where 𝑃𝑛 is the capacity of the DG at bus 𝑛, and 𝜌𝑡 is the 

normalized power output of the DG at time 𝑡. normalized 

power output is obtained using formulas in [10] as 

𝜌𝑡 = max (cos(𝛿) × cos(𝜑) × cos(15°(𝑡 − 12)) 

+sin(𝛿) sin(𝜑) , 0)    (11)  

where 𝛿 and 𝜑 denote latitude and declination, respectively. 

It is assumed that the normalized power output peaks as 1 

when the sun’s altitude is 90°. 
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4 Dynamic DNR model using MDP 

In this section, we formulate the dynamic DNR problem 

as MDP and propose DQN method to solve this problem. 

 
Fig. 1 Block diagram of the training process in DQN. 

4.1 Action 

In the dynamic DNR problem, an agent performs an ac-

tion at each time 𝑡. It is switching movement among a fea-

sible set of actions that keeps the distribution network radi-

ality after switching events. Switching action 𝑥𝑡
𝑠 of switch 𝑠 

at time 𝑡 can be described as  

𝑥𝑡
𝑠 = {

0     if switch off
1     if switch on

                 (12)  

𝑎𝑡 = {𝑥𝑠 
𝑡 | 𝑠 ∈ 𝑆}                         (13)                

4.2 State 

State in MDP is information on the environment that can 

describe the agent’s status numerically. States changes ac-

cording to the agent’s action. In dynamic DNR problem, we 

define the state as  

𝑠𝑡 = (𝑡, 𝒑𝑡 , 𝒒𝑡 , 𝑎𝑡−1, 𝜌𝑡
),                          (14) 

where vector 𝒑𝑡  and 𝒒𝑡  denote the active and reactive 

power of each bus except the slack bus, respectively. Also, 

 𝜌
𝑡
 is included in the state because DG output significantly 

affects the status of the distribution network.  

4.3 Reward 

The reward is a function that maps state and action to a 

number, i.e., reward. The agent learns optimal policy that 

maximizes the expected future reward, a sum of the rewards 

received until the operational period ends. Therefore, the re-

ward is very closely related to the objective function. There-

fore, we define a reward at 𝑡 as the negative value of energy 

loss, which is given as   

𝑟(𝑠𝑡 , 𝑎𝑡) = −(𝑙𝑡 × ∆𝑡 + ℎ𝑡 + ∑ 𝑐𝑡
𝑛 × ∆𝑡𝑛∈𝑁 )      (15) 

4.4 DQN Training 

Fig. 1 shows the training process of the proposed DQN 

based dynamic DNR algorithm. The algorithm is divided 

into two processes. The dotted line is the part where the 

agent learns parameters using the experience tuples from the 

replay buffer, and the solid line is the part that takes a virtual 

action based on the model learned so far. A detailed algo-

rithm to train DQN is shown in Algorithm 1. Here, 𝑀 𝑈, 

and 𝐵 are the number of episodes, the update period for Q-

target parameters, a set of experience tuples stored in the 

replay buffer, respectively. 

Algorithm 1 : DQN Training Algorithm 

Initialize: 

replay buffer 𝐵, DQN parameter 𝜃𝑄 

for 𝑖 = 1,… ,𝑀 

       𝜀 = max(𝜀𝑚𝑎𝑥 − 𝑘 ∙ 𝑖, 𝜀𝑚𝑖𝑛) 

for t= 1,… , 𝑇 

Select an action 𝑎𝑡 by 𝜀-greedy policy eq. (15) 

Take action 𝑎𝑡 and observe 𝑟(𝑠𝑡 , 𝑎𝑡) and 𝑠𝑡+1 

Store transition (𝑠𝑡 , 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in 𝐵 

Random sampling for minibatch from 𝐵 

Update 𝜃𝑄, which minimize its loss 𝐿(𝜃𝑄) eq. (3) 

       end for 

if 𝑚𝑜𝑑(𝑖, 𝑈) == 0 
             Update the target 𝑄 network: 𝜃𝑄− ← 𝜃𝑄 

end if  

end for 

Output : policy 𝜋 ∶ 𝑠𝑡 → argmax
𝑎

𝑄(𝑠𝑡, 𝑎, 𝜃𝑄)  

 

4.5 Performance Improvement 

To improve the performance of the proposed DQN algo-

rithm, we use two techniques:  𝜀-greedy policy [11] and the 

dropout [12].  

In our work, we adopt an 𝜀-greedy policy as a behavior 

policy to balance between exploration and exploitation. For 

a stable and efficient model training, we reduce 𝜀 linearly 

with 𝑘 according to 𝑖, as shown in the third line, Algorithm 

1. The efficiency of learning can be improved more by fo-

cusing on exploration in the early period, and more on ex-

ploitation as the algorithm proceed.  

The real data of DG’s output might have different char-

acteristics to the training data. Therefore, if the DQN is 

overfitting to the training data, the actual performance is 

lower than that with training data. To enhance the generali-

zation capability of the proposed DQN, we use the dropout 

technique. Dropout randomly removes some neurons be-

tween layers. The probability of removing neurons is called 

the dropout rate.  

5  Case study 

This section shows the performance of the proposed 

DQN based dynamic DNR in terms of energy loss compared 

to a myopic algorithm and dynamic programming. The my-

opic algorithm chooses an action that minimizes current en-

ergy loss, which is obtained through power flow calculation 

State

𝑠𝑡 = (𝑡, 𝒑 , 𝒒 , 𝜌𝑡)

Controller(agent)

𝜀-greedy policy
Action

(switching)

Environment

(distribution network)

Next state

(𝑠𝑡+1)

Reward

(power loss)

Replay buffer

𝑒 = (s, a, r, s )

Learning module

(DQN)

Update the parameters  

State←Next state
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every hour. Dynamic programming can achieve the global 

optimal solution under the assumption of perfect knowledge 

of future information. 

 

5.1 Test system description  

We use a 33-bus distribution network test feeder, as 

shown in Fig. 2 [13]. Basic distribution network parameters 

are obtained from Korea Power Cooperation (KEPCO). The 

power base and nominal voltage are 15 MVA and 22.9 kV. 

In this distribution network, there is one substation 

(154/22.9 kV) which supplies power to 33 buses, five sec-

tionalizing switches (solid lines), five tie switches (dotted 

line), and three solar PVs of 3 MW capacity. Note that solar 

PVs at the end of the feeder make the distribution network 

most vulnerable to voltage deviation.  

It is assumed that the power factor for all buses is 0.9. We 

use real load data for 2017 in the Midwest in the US [14], 

and then the load is scaled up to match the load capacity of 

KEPCO standard as 10 MVA [15]. The voltage tolerance 

limit was set from 0.91 p.u to 1.04 p.u according to KEPCO 

standard [15]. The maximum allowable current is 395 A 

from ACSR-OC 160mm2 line’s specification. We set the 

switching loss as 5 kWh/action, which comes from a con-

version using the cost of power [16]. 

5.2 Simulation setting  

For simulations, we use 30 days (1/1/2017 - 1/30/2017). 

Among them, the first 25 days and the other five days are 

used for training and testing the proposed DQN, respec-

tively. The learning rate 𝛼, discount factor 𝛾, buffer size, 

batch size, and update period  𝑈 are set as 0.005, 0.85, 5000, 

128, and 60, respectively. 

 
Fig. 2 A 33-bus distribution network test feeder. 

Fig. 3 shows the simulation results.  With the number of 

episodes, the total energy loss of the training period de-

creases, and then it converges. 

5.3 Performance evaluation  

Table 1 shows the performance of DNR algorithms in 

terms of energy loss. The bold font stands for the minimum 

loss. As shown in Table. 1, the average energy loss is 1229 

kWh at fixed configuration which does not change switch 

status at all. When switches operate in a random manner, 

the loss is even greater than that of the initial configuration 

because of the switching loss. The energy loss of the pro-

posed algorithm is 432 kWh, i.e., a reduction of 64.8% com-

pared to the fixed configuration. It is almost the same per-

formance as dynamic programming, which requires perfect 

future information. 

 
Fig. 3 Training result of DQN.  

The proposed algorithm shows better performance than 

myopic for all the five days. A small number of switching 

actions is better because frequent actions reduce the lifespan 

of the switch. The average number of switching per day of 

the proposed algorithm is less than one per switch.  

 
Fig. 4 Comparison real-time power loss of day 1 

Energy loss for day 1 is shown in Fig. 4 to check the pro-

posed algorithm’s behavior. The proposed algorithm takes 

the same action as the Myopic algorithm from 0:00 to 4:00, 

and then it does as dynamic programming from 4:00 to 8:00 

and 10:00 to 24:00. The proposed algorithm takes the same 

action as 75% of dynamic programming. With discount fac-

tor γ as 0.75, 0.85, and 0.95, the energy losses are 438 kWh, 

432 kWh, and 451 kWh, respectively, so we set γ as 0.85. 

Discount factor γ as 0.85 is lower than the usual value of 1. 

That is, this algorithm focuses more on the current situation. 

This implies that the myopic algorithm also shows a good 

performance in this dynamic DNR problem.  Because the 

proposed algorithm uses γ as 0.85, the agent partly takes the 

same actions as the myopic algorithm.
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Table. 1 Energy loss comparison of different optimization methods 

Method 
Energy loss (kWh) Switching number per day  

(average) Day 1 Day 2 Day 3 Day 4 Day 5 average 

Fixed configuration 872 615 1569 1565 1525 1229 0 

Random action 1302 1930 1786 1179 1354 1510 108 

Proposed algorithm 471 435 423 410 419 432 9.5 

Myopic 510 463 449 412 430 453 8.8 

Dynamic programming 463 435 423 409 419 430 8.4 

6 Conclusion  

With a high penetration of renewable energy, it might not 

be possible to use renewable energy fully. To minimize this 

energy loss as well as line loss, we propose a DQN based 

dynamic DNR algorithm in distribution networks. To im-

prove the performance of DQN, 𝜀-greedy policy and drop-

out are applied. Simulation results using 33 bus system con-

firms that the proposed algorithm reduces energy loss by 

64.8% compared to fixed configuration. Its performance is 

very close to the ideal solution obtained by the dynamic pro-

gramming method. In future work, more control variables 

such as shunt capacitors, smart inverters, smart transformer, 

and a multi-agent reinforcement learning algorithm are re-

quired. 
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