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Abstract: Two of the most important technologies for future power systems to reduce greenhouse 
gas are electric vehicles (EVs) and renewable generation. When EVs become more common, the 
overall demand of electricity will significantly increase because EVs consume a large amount of 
electricity. Also, a daily load curve with EVs heavily depends on how much electricity EVs consume 
and when electricity is consumed. The microgrid is an important technology to promote renewable 
generation, and the increased demand and changed load curve should be considered in the microgrid 
planning stage to install robust and economical microgrids. In this paper, we propose an algorithm for 
microgrid planning with EV charging demand to find the most economical configuration through 
which to maximally utilize renewable generation. The algorithm uses a renewable 
generation-following EV charging scheme and HOMER. Through simulations, it is shown that the 
microgrid constructed by the proposed algorithm reduces the investment cost and CO2 emission. 

Keywords: electric vehicle; EV charging scheduling; microgrid planning; HOMER  
 

1. Introduction 

Sustainable development is one of the key engineering challenges for future society. To this end, 
195 countries agreed in December 2015 to reduce greenhouse gas through the Paris agreement [1]. 
According to the agreement, Korea must reduce greenhouse emissions 37% by 2030 compared to 
that of business-as-usual (BAU). From the perspective of the power system, two of the most vital 
technologies to reduce greenhouse gas are electric vehicles (EVs) and renewable generation. Note 
that in this paper, an EV indicates any battery-type plug-in electric vehicle such as a plug-in hybrid 
electric vehicle (PHEV) or plug-in electric vehicle (PEV).  

EVs are receiving attention as a promising alternative to the fossil fuel-based vehicles that are 
one of the major causes of the greenhouse effect [2]. However, since EVs consume a very high 
amount of electricity during the charging period, the power system will be exposed to considerable 
stress when EVs become widespread [3]. It has been shown that simple electricity price rates such as 
time-of-use (TOU) pricing induce a new rebound peak in the off-peak hours because most EVs are 
mainly charged during that period [4]. 

Many studies have been conducted on reducing the stress on the grid by distributing the EV 
charging demand, i.e., the EV charging scheduling issue [4–11]. Distributing methods for EV 
charging demands can be classified into centralized [5–8] or decentralized [9–11] schemes. In [5], a 
real-time EV charging scheme has been proposed to improve voltage profile through centralized 
charging control. In addition, the authors of [6] have proposed various objective functions such as 
total feeder losses, total cost of energy, and total cost of PEV charging to protect the distribution grid. 
To reduce computational complexity, a scalable EV charging scheduling scheme has been proposed 
through Model Predictive Control (MPC) by using statistical information [7]. In [8], a 
semi-centralized scheme has been proposed in which, on behalf of each EV owner, a fleet operator 
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interacts with a distribution system operator to determine the hourly electricity price. Conversely, in 
[9–11], a decentralized scheme has been proposed. The EV scheduling was modeled as a Stackelberg 
game, in which the players are an electricity retailer and EV customers [9]. In [10], an optimal EV 
charging scheme has been proposed to fill the valleys of electric load curve. Last, with an 
assumption of predictable EV user’s behavior, an optimal EV scheduling has been proposed with 
discrete EV charging levels [11]. 

The microgrid is a vital technology to promote renewable generation to the power system. It is 
defined as a group of interconnected loads and distributed energy resources with clearly defined 
electrical boundaries. The two major advantages of the microgrid are: (i) a number of distributed 
generations can be adopted in the grid through the microgrid [12]; and (ii) the microgrid improves 
the grid resilience against disasters [13]. 

Since microgrids include fewer households and consume less electricity than a main grid, the 
adoption of EVs in a microgrid will have a more serious impact. Therefore, EV charging in 
microgrids should be precisely controlled to ensure their economy and resilience. To this end, recent 
studies have investigated the EV charging issue in the microgrid [14,15]. 

The optimal microgrid planning problem has been investigated through simulation tools such 
as HOMER and WebOpt [16,17], or through numerical analysis by considering uncertainties in the 
future [18–20]. In [18], an optimal microgrid planning problem has been proposed for island-mode 
microgrids while a similar optimization problem has been proposed for grid-connected microgrids 
in [19]. Another optimization problem for microgrid planning has been proposed that minimizes 
risk rather than cost [20]. 

EV charging demands will significantly change the load curve in microgrid, so we should 
consider EV charging scheduling schemes in the microgrid planning stage. To the best of our 
knowledge, however, none of the studies consider the load curve changes due to the EVs in the 
microgrid planning stage. 

In this paper, the microgrid planning problem with EV charging demands is investigated. 
Three main contributions of this work are: (i) we derive load curves from several EV charging 
scheduling schemes; (ii) optimal microgrid configurations for above charging schemes are 
investigated using HOMER; and (iii) we propose an algorithm for microgrid planning that 
maximally uses renewable generators. The proposed algorithm iteratively searches between an 
optimal EV charging schedule and an optimal microgrid configuration. Through simulations, it is 
shown that the microgrid constructed by the proposed algorithm reduces the investment cost and 
CO2 emission by controlling the EV charging demands effectively. 

The remainder of the paper is organized as follows. We first describe EV charging scheduling 
schemes in Section 2. Then, the optimal microgrid planning problem by using HOMER is shown in 
Section 3. Using the renewable generation-following EV charging scheme and HOMER, we propose 
an algorithm for microgrid planning in Section 4. After evaluating case studies in Section 5, we 
conclude our paper in Section 6. 

2. EV Charging Scheduling Schemes 

In this section, the EV charging model is described and the four EV charging scheduling 
schemes are then shown. 

2.1. EV Charging Model 

We consider a set   of EVs in a microgrid. Each day is divided into H  time periods. A 
period set and period index are denoted as {1,2, , }=  H  and h , respectively. Let h

ix  denote 

the amount of electricity consumption by customer i  at time h  to charge the EV in units of kW. It 
is assumed that all EVs are charged at home and on campus for the residential microgrid and 
campus microgrid, respectively. 

The charging requirement of each EV i  is a full charging of its battery before departure. This 
can be modeled as 
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where μc , iE , and δi  denote the battery charging efficiency, electricity in kWh required for full 
charging of EV i , and the maximum charging rate of EV i , respectively. The charging period for 
EV i  starts at αi  and ends at βi . Let [ , ]α β=i i i  denote the set of time periods in which EV i  
is at the place of charging, i.e., at home or on campus. 

2.2. Min Time Charging Scheduling Scheme 

The most naïve charging scheduling scheme is that EVs are charged as soon as possible. That is, 
when an EV is parked at home or on campus, it is charged with δi  charging rate until fully charged. 
In this paper, we call this scheme the “min time charging scheduling scheme” [21]. It is important to 
note that this scheme does not require interaction between customers and control entities such as the 
microgrid energy management system (EMS) and fleet operator, i.e., it is an uncontrolled charging 
scheme. 

2.3. Min Cost Charging Scheduling Scheme  

Currently, utility companies provide special electricity price rates for EV charging demand. In 
general, they provide TOU rates by dividing one day into peak, partial-peak, and off-peak periods. 
Table 1 shows two EV charging price rate examples for Pacific Gas and Electric Company (PG&E) in 
the US [22] and Korea Electric Power Corporation (KEPCO) in Korea [23] during the summer 
season. There is another type of electricity pricing rate named real-time pricing (RTP), which 
announces hourly price rate for the next day. Southern California Edison (SCE) in the US currently 
offers RTP in which the hourly price is decided from past daily load data and weather data. Note 
that a graph of RTP and SMP in one day of summer 2014 in Korea in Section 5 shows examples of 
TOU and RTP price rates offered by KEPCO. 

Table 1. Electric Vehicle (EV) Charging Price Rate for Pacific Gas and Electric Company (PG&E) and 
Korea Electric Power Corporation (KEPCO). 

Utility Company Off-Peak Period Partial-Peak Period Peak Period 

PG&E [11 p.m., 7 a.m.] 
[7 a.m., 2 p.m.],  
[9 p.m., 10 p.m.] [2 p.m., 9 p.m.] 

0.099 $/kWh 0.226 $/kWh 0.428 $/kWh 

KEPCO 
[11 p.m., 9 a.m.] 

[9 a.m., 10 a.m.],  
[12 p.m., 1 p.m.],  
[5 p.m., 11 p.m.] 

[10 a.m., 12 p.m.],  
[1 p.m., 5 p.m.] 

0.048 $/kWh 1 0.121 $/kWh 0.194 $/kWh 
1 We use the exchange rate of $1 = 1200 Won. 

The second uncontrolled EV charging scheme is the cost minimization charging scheduling 
scheme, called the “min cost charging scheduling scheme”. In this charging scheme, customers 
decide the amount of electricity for the EV charging in each period to minimize the cost of electricity 
[24]. Since we consider two price rates, i.e., TOU rate and RTP, they are called “min cost1” and “min 
cost2”, respectively. The optimization problem can be formulated as  

mU n( ) i
∈

⋅h
i

i

h h
ix h

i p x


 (2) 
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where hp  is the electricity price rate at time h . It is assumed that the electricity price rate of the 
day is known to all customers. 

The control variable for the problem (U )i  is only related to each customer i  and it does not 
depend on other customers’ charging behaviors. Therefore, each customer decides his/her charging 
scheduling. That is, this scheme does not require real-time interaction between each customer and 
the control entity. The only information for customer i  needed to solve the problem (U )i  is the 
electricity price rate of the day. 

Generally, the problem (U )i  can have many solutions. and we choose the one which has the 
fastest charging end time because it is the most convenient solution for the EV owner. 

2.4. Min Var Charging Scheduling Scheme 

In the microgrid case, another important metric is the peak electricity demand, since the 
microgrid should be planned to fulfill the peak demand. Therefore, we choose the objective to 
be minimizing the maximum demand of one-day load. In general, the problem has more than 
one solution, so we choose the one that minimizes the variance of one-day load. We call this the 
“min Var charging scheduling scheme”. 

To this end, the amount of base load, denoted by 0
hx , as well as EV loads should be 

considered together. We formulate the optimization problem as 

,
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(3) 

where hX  and Var( )hX  are the total electricity consumption at h  and its variance, respectively. 

They are defined as 
0

∈

+= h h h
i

i
X x x



 and 21
Var( ) ( )μ= −h h

h
X X

H
. 

The problem (C)  is a standard convex optimization problem, so we can get its solution. 
Detailed procedures and the closed form solution for the problem (C)  are presented in 
Appendix A. 

The control variable for this optimization problem is the charging rates for all of the EVs in the 
microgrid. Therefore, the problem (C)  requires a central control entity in order to obtain the 
optimal solution and to distribute power to all customers. 

Note that, in [15], the EV scheduling problem of minimizing the load variance was proposed 
without showing its closed form solution, while this work derived the closed form solution for (C) . 
Also, the target of [15] is the EV scheduling in the case of one house while the target of this work is 
microgrid planning. 

2.5. Max Renewable Charging Scheme 

Since a number of renewable generations will be adopted in a microgrid [12], one key goal for 
charging scheduling in a microgrid is a maximum use of the renewable generations. Mathematically, 
the objective of this scheduling scheme is to minimize the difference between electric load and the 
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renewable generation output by controlling the EV charging demands. We call this “max renewable 
charging scheduling scheme”. 

Since the power output of renewable generation displays randomness, we use an expected 
value for the output of a renewable generation. Let hR  denote a random variable defined to be the 
output of renewable generations at time h , and recall that the total electricity consumption at h  is 

hX , which consists of base load and EV charging load. Then, we formulate the optimization 
problem as 
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We assume that the type and capacity of renewable generations in the microgrid are given. Like 
the problem (C) , the problem (R)  is a standard convex optimization problem, so we can get 
the solution. Because of the space limit, we omit the detailed procedure. 

3. Microgrid Planning Problem 

When the EV charging demand is added to the base load, the load curve significantly changes. 
The optimal microgrid planning problem for the changed load is described in this section. We use 
HOMER Energy software to obtain the optimal microgrid configurations. 

3.1. HOMER Energy 

HOMER energy software was originally developed by the US National Renewable Energy 
Laboratory (NREL) and is commercially available [25]. It is a simulation tool used to find the optimal 
combination of generations for a microgrid. For this software, basic parameters need to be manually set, 
including electrical load, diesel price, solar and wind resources, generation capacities, system costs for 
each generation, etc. The term ‘optimal’ in HOMER means that the obtained solution has the lowest total 
net present cost (NPC) [26] to build the microgrid. The total NPC is mathematically defined as 

0

Total NPC .
(1 )

M
ann

t
t

C
r=

=
+  (4) 

where M , r , and annC  are the project lifetime, discount rate, and the total annualized cost during 
the project lifetime, respectively. 

Note that, to obtain the optimal microgrid configuration, HOMER uses an exhaustive search 
algorithm that simply calculates the NPCs of all candidate solutions and chooses the one with the 
lowest NPC as an optimal solution [27]. 

3.2. Microgrid Component Modeling 

We consider the possible energy supply options to be solar photovoltaics (PV), wind turbine, 
diesel generator, battery, and alternating current (AC)/direct current (DC) converter. Table 2 shows 
the system cost for each generator obtained in [28] and default value. The system cost comprises 
capital cost, replacement cost, and operation and maintenance (O&M) cost. 

The load profiles for the targeted areas include the base load and EV charging demand. The 
base load curves are obtained from [29], which is an electricity consumption measurement report by 
the Korean government. The load curves for EV charging are obtained as shown in Section 2 for the 
various charging schemes. Also, the daily noise of 15% and hourly noise of 20% are added to the load. 
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Table 2. Unit Component Cost for Microgrid Configuration. 

Generators Capital Cost ($) Replacement Cost ($) O&M Cost ($/yr) 
Solar PV (20 kW) 60,000 60,000 200 

Wind turbine (20 kW) 100,000 100,000 1000 
Diesel (50 kW) 25,000 25,000 13,000 

Battery (20 kWh) 6000 6000 200 
Converter (20 kW) 6000 6000 0 

The daily solar radiation data for Seoul, Korea (37°34′ N, 126°58′ E) are obtained from the 
National Aeronautics and Space Administration (NASA) Surface Meteorology and Solar Energy 
website [30]. The annual average daily solar radiation for Seoul is 4.05 kWh/m2/day. The maximum 
and minimum values are 5.54 kWh/m2/day and 2.44 kWh/m2/day in May and December, 
respectively. The diesel price is set as $1.22 per liter, which is obtained from the diesel price 
monitoring website [31]. The project life time of 25 years and the annual interest rate of 6.0% are 
used. 

4. Max Renewable Microgrid Planning Algorithm  

To construct a robust and economical microgrid with EVs, we propose an algorithm for 
microgrid planning that uses renewable generation as much as possible. 

Figure 1 shows the structure of the proposed microgrid planning algorithm. The proposed 
algorithm iteratively solves between an EV charging scheduling problem and a microgrid planning 
problem until the solution converges. The EV charging scheduling problem is (R)  because the 
goal of this algorithm is the maximum use of renewables. To solve the first problem, a microgrid 
configuration is required as input and its output is the load curve in the microgrid. Conversely, the 
second problem requires the load curve and it finds an optimal microgrid configuration that 
minimizes the microgrid construction and operation cost. This solution is obtained using HOMER. 

 
Figure 1. Structure of the proposed microgrid planning algorithm. 

The flowchart of the proposed algorithm is shown in Figure 2, and its explanation is as follows. 

Step 1: The proposed algorithm begins by setting a default renewable generation type(s) and their 
capacity with given load curve and diverse EV scheduling schemes. 

Step 2: The load curve with EVs using max renewable charging scheme is generated by solving the 
problem (R)  in Section 2.5. 

Step 3: With the updated load curve, the optimal microgrid configuration is investigated using 
HOMER. 
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Step 4: We compare the previous and updated configurations, i.e., generation type and capacity, 
in the microgrid. If they are the same, the proposed algorithm ends. 

Step 4-1: Otherwise, we change the renewable generation types and capacity with the 
updated ones and the next step is step 2. 

 
Figure 2. Flowchart for the proposed microgrid planning algorithm. 

In the case study, we use a default setting as the min var scheme’s microgrid configuration. 
However, any other microgrid configurations can be used as a default. We confirmed that the same 
final configuration is obtained even if the microgrid configurations with min time and min cost are 
used as the default setting. 

5. Case Study 

In this section, two different microgrid cases, i.e., residential microgrid and campus microgrid, 
are planned at Seoul, Korea. First, the load curves with various EV charging scheduling schemes are 
presented. Then, optimal microgrid configurations for each load curve are shown. 

5.1. Case Study Settings 

In this case study, one day is divided into 24=H  h with the time interval of 1 h. 
For EV battery modeling, we use the default parameters of Nissan Leaf [32]. That is, the battery 

capacity is 24 kWh and δi  for the residential area, i.e., level 2 charging, is 3.3 kW. Average driving 

efficiency is 5.36 km/kWh and 0.85μ =c . 

For an EV i , the EV parameters, i.e., arrival time αi , departure time βi , and battery 

capacity to charge iE , are randomly generated. To obtain the values for these parameters, we 
use the “2009 National Household Travel Survey” reported by the US Department of 
Transportation [33]. According to the survey data, the average daily vehicle kilometers of travel 
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is 46.62 km. From the parameters of the Nissan Leaf [32], 10.2 kWh is required to drive 46.62 km. 
It is then assumed that / μi cE , αi , and βi  are uniformly distributed in [8 kWh, 12 kWh], [5 
p.m. 9 p.m.], and [5 a.m., 7 a.m.], respectively. Note that the considered arrival and departure 
time ranges cover more than 90% of drivers [33]. 

To use the max renewable charging scheme, )( hE R  in the problem (R)  is needed. In this 

case study, no specific distribution for hR  is assumed, but we use real measurement data to get 

)( hE R . We have the output data of a 30 kW PV generator in Korea. Then, the output of a PV 
generator in microgrid is interpolated with the measurement data. For example, if a PV generator 
has 100 kW capacity, its output is obtained by multiplying the measurement data by 3.33. 

The TOU-based EV charging price rate of KEPCO is used for the min cost1 charging scheme. 
However, the results of this work are not limited to the KEPCO price rate. Any TOU pricing-based 
EV charging tariff shows a similar result. For the min cost2, i.e., RTP, it is assumed that the system 
marginal price (SMP) at each hour is the electricity price for the hour. Figure 3 shows the SMP in 
summer 2014 obtained by Korea Power Exchange and the TOU-based EV charging price rate. Note 
that the SMP of a day is announced every day, but the TOU price rate is the same.  

 
Figure 3. Daily system marginal price (SMP) in summer 2014 in Korea and TOU-based EV charging 
price rate. 

5.2. Load Curve with EVs 

5.2.1. Residential Area 

We first consider a microgrid for a residential area with 100 households. A household load 
curve is obtained from [29]. We use the residential load curve during the summer season, which 
is shown in Figure 4 as “Base load”. The electricity consumption for one day is 9.85 kWh and 
the peak demand is 0.54 kW at 10 p.m. With this base load, the EV charging demand is added. 

The daily load curve shape changes according to the EV penetration ratio and charging 
scheduling schemes. Figure 4 shows the load curve for the residential area with the min time, min 
cost1, min cost2, min Var, and max renewable charging scheduling schemes. We consider 10 EVs 
and 30 EVs cases, which refer to the EV penetration ratios of 10% and 30%, respectively. Since we 
assumed that all EVs return home from 5 p.m. to 9 p.m., and leave home from 5 a.m. to 7 a.m. [33], 
Figure 4 shows only the period when EVs are parked, i.e., from 5 p.m. to 7 a.m.. For the uncontrolled 
charging scheduling schemes, i.e., min time, min cost1, and min cost2 charging schemes, even if a 
few EVs (2–3 EVs) exist in the residential area, the peak demand and time are changed. 
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(a)

 
(b)

Figure 4. Load curves from 5 p.m. to 7 a.m. for the residential area. (a) 10 EVs; (b) 30 EVs. 

In the case of the min time charging scheme, the charging demands are naturally distributed as 
the arrival times of EVs are distributed in [5 p.m., 9 p.m.], resulting in less peak demand than that of 
the min cost schemes. For the min Var charging scheme, the EV charging demand first fills the valley 
of the off-peak hours. Therefore, the peak demand is not increased to 20 EVs. The max renewable 
charging scheme shows similar load curve to that of min Var charging scheme, but it reveals two 
small peak demands at 6 p.m. at 6 a.m. since PV generates power at those times. 

Note that in this scenario, only PV generation is considered as the renewable generation since 
wind speed is insufficient to be competitive. 

5.2.2. Campus 

The base load curve for the campus is also obtained from the measurement report in [29]. 
We use the campus load curve during the summer season, which is shown in Figure 5 as “Base 
load”. The total electricity consumption for one day is 1687 kWh and the peak demand of 115.6 
kW occurred at 2 p.m. 
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(a)

 
(b)

Figure 5. Load curves from 7 a.m. to 10 p.m. for the campus. (a) 10 EVs; (b) 30 EVs. 

The same average daily vehicle kilometers of travel, αi , and βi  are used with an offset of 

driving time to work. That is, / μi cE , αi , and βi  are uniformly distributed in [8 kWh, 12 
kWh], [7 a.m., 9 a.m.], and [5 p.m., 10 p.m.], respectively. In this case, it is assumed that all EVs 
are charged on the campus. Therefore, Figure 5, which displays the load curve for the campus, 
shows only the period when EVs are parked at the campus, i.e., from 7 a.m. to 10 p.m. 

The min time and min cost charging schemes increase peak demand while the peak demand for 
the min Var charging scheme is not changed for the 30 EVs. The min cost1 charging scheme has three 
spikes at 9 a.m., 12 p.m., and 5 p.m. because of the KEPCO EV charging price rate. The second spike 
is the peak demand since the base load at 12 p.m. is the highest among the three spike times. Similar 
tendency is shown in the min cost2 charging scheme. The load curve of the max renewable charging 
scheme shows the same shape as the general PV generation output, and the peak demand of the 
scheme is the same as those of the min cost charging schemes. 

5.3. Optimal Microgrid Planning 

With these load curves, the optimal microgrid configurations are obtained using HOMER. In 
this section, the microgrid operates as the island mode. Section 5.3 discusses the case of the 
microgrid in grid-connected mode. 
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5.3.1. Residential Area 

Figure 6 shows the optimal microgrid configurations for the residential area for various EV 
charging schemes. The microgrid configurations using the min var charging scheme and the 
proposed algorithm show considerably similar generation and battery capacities (PV and diesel 
generations) to the base load since load curves show similar shape as shown in Figure 4. Because 
they only have 50 kW diesel generation capacity with 30 EVs, more battery capacity is required to 
make a robust microgrid. On the other hand, the other charging schemes have greater diesel 
generator capacity to support the peak demand in the 30 EVs scenario. 

 
Figure 6. Optimal microgrid configurations for the residential area. 

Table 3 shows the investment costs and CO2 emission of the optimal microgrid configurations 
for each case in detail. The configuration with the min cost1 charging scheduling scheme and the 
proposed max renewable microgrid configuration are the most expensive and the least expensive 
solutions to construct the residential microgrid, respectively. The total NPC differences between 
scheduling schemes are small with 10 EVs, but the gap increases with a number of EVs. The total 
NPC of the proposed microgrid with 30 EVs saves 10.3% of the cost compared with that of the min 
cost1 scheme with 30 EVs. 

Table 3. Investment cost and CO2 emission for the residential microgrid configurations. 

Initial Capital ($) Operating Cost ($/yr) Total NPC ($) CO2 Emission (kg/yr)
Base load 355,000 122,169 1,916,725 206,555 

Min time (10 EVs) 385,000 144,970 2,238,198 238,495 
Min cost1 (10 EVs) 385,000 145,172 2,240,789 237,407 
Min cost2 (10 EVs) 373,000 132,456 2,066,238 223,564 
Min var. (10 EVs) 361,000 132,744 2,057,912 226,512 
Max ren. (10 EVs) 355,000 133,387 2,060,134 229,090 
Min time (30 EVs) 464,000 186,050 2,842,343 295,585 
Min cost1 (30 EVs) 494,000 200,611 3,058,487 308,342 
Min cost2 (30 EVs) 482,000 181,905 2,807,361 285,764 
Min var. (30 EVs) 493,000 176,020 2,743,129 279,366 
Max ren. (30 EVs) 493,000 175,139 2,731,867 279,578 

Note that the microgrid with min Var scheme and the proposed microgrid show almost the 
same result because the PV generation has no impact during the night. In case of the campus 
microgrid, the two schemes show different results. 

5.3.2. Campus 

Optimal microgrid configurations for the campus are shown in Figure 7. Unlike the residential 
microgrid, the configuration for the min Var charging scheme is different to that of the proposed 
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microgrid configuration. Due to the nature of maximizing renewable generation, the proposed 
microgrid requires the highest renewable capacity. 

 
Figure 7. Optimal microgrid configurations for the campus. 

Table 4 shows the investment costs and CO2 emission for various EV charging schemes in the 
campus microgrid. The configuration with the min Var charging scheme and the proposed 
microgrid configuration show the maximum and minimum total NPC, respectively. Again, the cost 
savings increase with a number of EVs. Since the load curve of the min Var charging scheme shows a 
flat shape, PV generation is not a viable solution. Therefore, it mainly depends on diesel generation 
resulting in the highest cost and CO2 emission. On the other hand, the proposed microgrid 
maximally utilizes the PV generation output, so it shows the lowest CO2 emission despite the same 
diesel generation capacity. 

Table 4. Investment cost and CO2 emission for the campus microgrid configurations.  

Initial Capital ($) Operating Cost ($/yr) Total NPC ($) CO2 Emission (kg/yr)
Base load 907,000 164,152 3,005,418 267,598 

Min time (10 EVs) 1,093,000 164,866 3,200,540 265,982 
Min cost1 (10 EVs) 1,093,000 164,926 3,201,313 265,965 
Min cost2 (10 EVs) 1,093,000 165,345 3,206,659 266,298 
Min var. (10 EVs) 1,069,000 173,858 3,291,483 275,034 
Max ren. (10 EVs) 1,099,000 159,638 3,139,714 257,876 
Min time (30 EVs) 974,000 211,326 3,675,459 336,167 
Min cost1 (30 EVs) 896,000 218,647 3,691,036 352,969 
Min cost2 (30 EVs) 914,000 217,554 3,695,074 349,272 
Min var. (30 EVs) 896,000 224,112 3,760,900 364,809 
Max ren. (30 EVs) 1,112,000 191,039 3,554,125 292,955 

5.4. Discussion 

The optimal microgrid configuration in the grid-connected mode is also investigated. 
When the electricity rate of the main grid is set to SMP as shown in Figure 3, the optimal 
microgrid configurations for residential and campus are not cost-effective for installing 
distributed generators. It is because the electricity price of the main grid is lower than installing 
distributed generators. Therefore, the daily load curve in the grid-connected mode microgrid is 
“min cost1” or “min cost2” in Figures 3 and 4 according to the pricing schemes. 

As shown in Figures 3 and 4, the current EV pricings (TOU pricing and one day before 
RTP) fail to distribute EV charging load. Therefore, a more intelligent pricing scheme or EV 
aggregator, which interacts between retailer and EV customer, is required to distribute the EV 
charging load [34]. 
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In general, a flat load curve reduces investment and O & M cost in the power system. 
However, when there are many deferrable loads and renewable generations, the flat daily load 
curve increases the cost. If the deferrable loads follow the outputs of the renewable generation, 
we can construct a more economical microgrid. 

If the microgrid only has diesel generators, the CO2 emission for residential and campus 
microgrids are 459,370 kg/yr and 692,302 kg/yr, respectively, in the 30 EVs scenario. That is, the max 
renewable charging scheme reduces the CO2 emission as 39.1% and 57.7% in comparison with those 
of diesel only microgrid. This result achieves the greenhouse gas reduction target of Korea according 
to the Paris agreement. 

The proposed microgrid planning algorithm theoretically provides a configuration that reveals 
minimum CO2 emission since it maximally uses renewable generators. In practice, the randomness 
of renewable generators sometimes causes lower CO2 emissions by other configurations than the 
proposed algorithm. However, the difference is minimal, i.e., less than 1%, and this case occurrs 
when the renewable generators make small contributions as shown in the residential microgrid 
result. The proposed algorithm results in a significant reduction of CO2 emissions when renewable 
generators contribute significantly like in a campus microgrid. 

We also considered the wind turbine option, but our configurations do not include wind 
turbines because wind speed in Seoul, Korea is too low to be a competitive solution [35]. 

6. Conclusions 

To reduce greenhouse gas in the power industry, harmonizing between the two emerging 
technologies, i.e., microgrid and electric vehicles (EVs) is critical. Therefore, the microgrid planning 
problem should consider the number of customers in the area who will purchase EVs and how the 
EV charging loads will be distributed. In this paper, we investigated several uncontrolled and 
controlled EV charging scheduling schemes: the min time charging scheme, two cost minimization 
charging schemes, the minimization of variance (min Var) charging scheme, and the max renewable 
charging scheme. In addition, the optimal microgrid configurations for those charging schemes and 
different EV penetration ratios were investigated using HOMER. Finally, we proposed a microgrid 
planning algorithm for a maximum use of renewable generators. The proposed algorithm iteratively 
solves the EV charging scheduling and microgrid configuration problems to maximally use the 
renewable generations. Through residential and campus microgrids case studies, the proposed 
algorithm constructs an economical microgrid with less CO2 emissions. If the installed renewable 
generation does not produce output power during EV charging, the proposed algorithm works like 
the min Var charging scheme. Otherwise, it maximizes the use of renewable generations resulting in 
the lowest investment cost and CO2 emission. 
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Appendix A 

Detailed Procedures to Solve (C) 

Here, we derive the solution of the convex optimization problem (C) . We begin by 
solving the problem (C)  using a single EV case. The simple case can be formulated as 
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From the last constraint, we can reduce the domain of the problem to 1∈h  . Also, since 
the constant term in the objective function has no meaning, we can change it. Then, the problem 
is changed into 
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Its Lagrangian is given by  
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where 1x , 1λ , and 2λ  denote the vectors of 1
hx , 1λ h , and 2λ h , respectively, and 1λ h , 2λ h , 

and ν  are the Lagrangian multipliers. The optimal solution *
1x  for the problem (C1')  

should satisfy the following KKT conditions [36] 

* 1
1 0

μ
− = h

h c

Ex  (A4) 

*
1 10 , ,δ≤ ≤ ∀hx h  (A5) 

*
1 0λ ≥h , *

2 0, ,λ ≥ ∀h h  (A6) 

* *
1 1 1( ) 0λ δ− =h
h x , * *

2 1 , ,λ ∀h
hx h  (A7) 

* * * *
1 0 1 2 0, .μ λ λ ν+ − + − + = ∀h h

h hx x h  (A8) 

To satisfy the slackness condition of (A6), there are four possible cases: 

(i) *
1 0λ >h , and *

2 0λ >h : No feasible solution exists. 

(ii) *
1 0λ =h , and *

2 0λ >h : From (A7) and (A8), we have *
1 0=hx , and * *

0 2 0μ λ ν− − + =h
hx . 

From (A6), the latter equation is changed into *
0 μ ν> −hx . Therefore, the condition to be in 

this case is *
0{ | }μ ν= ∈ > −h

min ih x  , where min  denotes the set of time intervals that 
are in this case. 



Energies 2017, 10, 1487  15 of 16 

 

(iii) *
1 0λ >h , and *

2 0λ =h : From (A7) and (A8), *
1 1δ=hx , and * *

1 0 1 0δ μ λ ν+ − + + =h
hx . 

Due to the slack variable, we have *
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From (A5), *ν  can be obtained as 
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This solution shows an intuition that the EV consumes zero or maximum rate when the 
base load is higher or lower than a certain threshold, respectively. When the base load is in 
between the two thresholds, it consumes electricity between 0 and δi  that is inversely 
proportional to the base load. 

For the cases of more than one EV, the problem (C')  is still the convex optimization 
problem, though its closed form solution is a bit more complex. We can solve them by using the 
CVX package. CVX is a Matlab-based modeling system for convex optimization [37]. 
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